3.350 \(\int (7+5 x^2)^2 \sqrt{4+3 x^2+x^4} \, dx\)

Optimal. Leaf size=198 \[ \frac{81 \left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right ),\frac{1}{8}\right )}{\sqrt{2} \sqrt{x^4+3 x^2+4}}+\frac{25}{7} x \left (x^4+3 x^2+4\right )^{3/2}+\frac{1}{7} x \left (38 x^2+119\right ) \sqrt{x^4+3 x^2+4}+\frac{319 x \sqrt{x^4+3 x^2+4}}{7 \left (x^2+2\right )}-\frac{319 \sqrt{2} \left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{7 \sqrt{x^4+3 x^2+4}} \]

[Out]

(319*x*Sqrt[4 + 3*x^2 + x^4])/(7*(2 + x^2)) + (x*(119 + 38*x^2)*Sqrt[4 + 3*x^2 + x^4])/7 + (25*x*(4 + 3*x^2 +
x^4)^(3/2))/7 - (319*Sqrt[2]*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticE[2*ArcTan[x/Sqrt[2]], 1/8]
)/(7*Sqrt[4 + 3*x^2 + x^4]) + (81*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticF[2*ArcTan[x/Sqrt[2]],
 1/8])/(Sqrt[2]*Sqrt[4 + 3*x^2 + x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0772802, antiderivative size = 198, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {1206, 1176, 1197, 1103, 1195} \[ \frac{25}{7} x \left (x^4+3 x^2+4\right )^{3/2}+\frac{1}{7} x \left (38 x^2+119\right ) \sqrt{x^4+3 x^2+4}+\frac{319 x \sqrt{x^4+3 x^2+4}}{7 \left (x^2+2\right )}+\frac{81 \left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{\sqrt{2} \sqrt{x^4+3 x^2+4}}-\frac{319 \sqrt{2} \left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{7 \sqrt{x^4+3 x^2+4}} \]

Antiderivative was successfully verified.

[In]

Int[(7 + 5*x^2)^2*Sqrt[4 + 3*x^2 + x^4],x]

[Out]

(319*x*Sqrt[4 + 3*x^2 + x^4])/(7*(2 + x^2)) + (x*(119 + 38*x^2)*Sqrt[4 + 3*x^2 + x^4])/7 + (25*x*(4 + 3*x^2 +
x^4)^(3/2))/7 - (319*Sqrt[2]*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticE[2*ArcTan[x/Sqrt[2]], 1/8]
)/(7*Sqrt[4 + 3*x^2 + x^4]) + (81*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticF[2*ArcTan[x/Sqrt[2]],
 1/8])/(Sqrt[2]*Sqrt[4 + 3*x^2 + x^4])

Rule 1206

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(e^q*x^(2*q - 3)*(
a + b*x^2 + c*x^4)^(p + 1))/(c*(4*p + 2*q + 1)), x] + Dist[1/(c*(4*p + 2*q + 1)), Int[(a + b*x^2 + c*x^4)^p*Ex
pandToSum[c*(4*p + 2*q + 1)*(d + e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - b*(2*p + 2*q - 1)*e^q*x^(2*q - 2) -
c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && IGtQ[q, 1]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(2*b*e*p + c*d*(4*p
+ 3) + c*e*(4*p + 1)*x^2)*(a + b*x^2 + c*x^4)^p)/(c*(4*p + 1)*(4*p + 3)), x] + Dist[(2*p)/(c*(4*p + 1)*(4*p +
3)), Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) - b^2*e*(2*p + 1))*x^2, x]*(a +
 b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps

\begin{align*} \int \left (7+5 x^2\right )^2 \sqrt{4+3 x^2+x^4} \, dx &=\frac{25}{7} x \left (4+3 x^2+x^4\right )^{3/2}+\frac{1}{7} \int \left (243+190 x^2\right ) \sqrt{4+3 x^2+x^4} \, dx\\ &=\frac{1}{7} x \left (119+38 x^2\right ) \sqrt{4+3 x^2+x^4}+\frac{25}{7} x \left (4+3 x^2+x^4\right )^{3/2}+\frac{1}{105} \int \frac{7440+4785 x^2}{\sqrt{4+3 x^2+x^4}} \, dx\\ &=\frac{1}{7} x \left (119+38 x^2\right ) \sqrt{4+3 x^2+x^4}+\frac{25}{7} x \left (4+3 x^2+x^4\right )^{3/2}-\frac{638}{7} \int \frac{1-\frac{x^2}{2}}{\sqrt{4+3 x^2+x^4}} \, dx+162 \int \frac{1}{\sqrt{4+3 x^2+x^4}} \, dx\\ &=\frac{319 x \sqrt{4+3 x^2+x^4}}{7 \left (2+x^2\right )}+\frac{1}{7} x \left (119+38 x^2\right ) \sqrt{4+3 x^2+x^4}+\frac{25}{7} x \left (4+3 x^2+x^4\right )^{3/2}-\frac{319 \sqrt{2} \left (2+x^2\right ) \sqrt{\frac{4+3 x^2+x^4}{\left (2+x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{7 \sqrt{4+3 x^2+x^4}}+\frac{81 \left (2+x^2\right ) \sqrt{\frac{4+3 x^2+x^4}{\left (2+x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{\sqrt{2} \sqrt{4+3 x^2+x^4}}\\ \end{align*}

Mathematica [C]  time = 0.473367, size = 343, normalized size = 1.73 \[ \frac{\sqrt{2} \left (319 \sqrt{7}-35 i\right ) \sqrt{\frac{-2 i x^2+\sqrt{7}-3 i}{\sqrt{7}-3 i}} \sqrt{\frac{2 i x^2+\sqrt{7}+3 i}{\sqrt{7}+3 i}} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{-\frac{2 i}{\sqrt{7}-3 i}} x\right ),\frac{-\sqrt{7}+3 i}{\sqrt{7}+3 i}\right )+4 \sqrt{-\frac{i}{\sqrt{7}-3 i}} x \left (25 x^8+188 x^6+658 x^4+1109 x^2+876\right )-319 \sqrt{2} \left (\sqrt{7}+3 i\right ) \sqrt{\frac{-2 i x^2+\sqrt{7}-3 i}{\sqrt{7}-3 i}} \sqrt{\frac{2 i x^2+\sqrt{7}+3 i}{\sqrt{7}+3 i}} E\left (i \sinh ^{-1}\left (\sqrt{-\frac{2 i}{-3 i+\sqrt{7}}} x\right )|\frac{3 i-\sqrt{7}}{3 i+\sqrt{7}}\right )}{28 \sqrt{-\frac{i}{\sqrt{7}-3 i}} \sqrt{x^4+3 x^2+4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(7 + 5*x^2)^2*Sqrt[4 + 3*x^2 + x^4],x]

[Out]

(4*Sqrt[(-I)/(-3*I + Sqrt[7])]*x*(876 + 1109*x^2 + 658*x^4 + 188*x^6 + 25*x^8) - 319*Sqrt[2]*(3*I + Sqrt[7])*S
qrt[(-3*I + Sqrt[7] - (2*I)*x^2)/(-3*I + Sqrt[7])]*Sqrt[(3*I + Sqrt[7] + (2*I)*x^2)/(3*I + Sqrt[7])]*EllipticE
[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])] + Sqrt[2]*(-35*I + 319*Sqrt[7])*
Sqrt[(-3*I + Sqrt[7] - (2*I)*x^2)/(-3*I + Sqrt[7])]*Sqrt[(3*I + Sqrt[7] + (2*I)*x^2)/(3*I + Sqrt[7])]*Elliptic
F[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])])/(28*Sqrt[(-I)/(-3*I + Sqrt[7])
]*Sqrt[4 + 3*x^2 + x^4])

________________________________________________________________________________________

Maple [C]  time = 0.009, size = 258, normalized size = 1.3 \begin{align*}{\frac{25\,{x}^{5}}{7}\sqrt{{x}^{4}+3\,{x}^{2}+4}}+{\frac{113\,{x}^{3}}{7}\sqrt{{x}^{4}+3\,{x}^{2}+4}}+{\frac{219\,x}{7}\sqrt{{x}^{4}+3\,{x}^{2}+4}}+{\frac{1984}{7\,\sqrt{-6+2\,i\sqrt{7}}}\sqrt{1- \left ( -{\frac{3}{8}}+{\frac{i}{8}}\sqrt{7} \right ){x}^{2}}\sqrt{1- \left ( -{\frac{3}{8}}-{\frac{i}{8}}\sqrt{7} \right ){x}^{2}}{\it EllipticF} \left ({\frac{x\sqrt{-6+2\,i\sqrt{7}}}{4}},{\frac{\sqrt{2+6\,i\sqrt{7}}}{4}} \right ){\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+4}}}}-{\frac{10208}{7\,\sqrt{-6+2\,i\sqrt{7}} \left ( i\sqrt{7}+3 \right ) }\sqrt{1- \left ( -{\frac{3}{8}}+{\frac{i}{8}}\sqrt{7} \right ){x}^{2}}\sqrt{1- \left ( -{\frac{3}{8}}-{\frac{i}{8}}\sqrt{7} \right ){x}^{2}} \left ({\it EllipticF} \left ({\frac{x\sqrt{-6+2\,i\sqrt{7}}}{4}},{\frac{\sqrt{2+6\,i\sqrt{7}}}{4}} \right ) -{\it EllipticE} \left ({\frac{x\sqrt{-6+2\,i\sqrt{7}}}{4}},{\frac{\sqrt{2+6\,i\sqrt{7}}}{4}} \right ) \right ){\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+4}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x^2+7)^2*(x^4+3*x^2+4)^(1/2),x)

[Out]

25/7*x^5*(x^4+3*x^2+4)^(1/2)+113/7*x^3*(x^4+3*x^2+4)^(1/2)+219/7*x*(x^4+3*x^2+4)^(1/2)+1984/7/(-6+2*I*7^(1/2))
^(1/2)*(1-(-3/8+1/8*I*7^(1/2))*x^2)^(1/2)*(1-(-3/8-1/8*I*7^(1/2))*x^2)^(1/2)/(x^4+3*x^2+4)^(1/2)*EllipticF(1/4
*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2))-10208/7/(-6+2*I*7^(1/2))^(1/2)*(1-(-3/8+1/8*I*7^(1/2))*x^
2)^(1/2)*(1-(-3/8-1/8*I*7^(1/2))*x^2)^(1/2)/(x^4+3*x^2+4)^(1/2)/(I*7^(1/2)+3)*(EllipticF(1/4*x*(-6+2*I*7^(1/2)
)^(1/2),1/4*(2+6*I*7^(1/2))^(1/2))-EllipticE(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{x^{4} + 3 \, x^{2} + 4}{\left (5 \, x^{2} + 7\right )}^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^2*(x^4+3*x^2+4)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + 3*x^2 + 4)*(5*x^2 + 7)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (25 \, x^{4} + 70 \, x^{2} + 49\right )} \sqrt{x^{4} + 3 \, x^{2} + 4}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^2*(x^4+3*x^2+4)^(1/2),x, algorithm="fricas")

[Out]

integral((25*x^4 + 70*x^2 + 49)*sqrt(x^4 + 3*x^2 + 4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\left (x^{2} - x + 2\right ) \left (x^{2} + x + 2\right )} \left (5 x^{2} + 7\right )^{2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x**2+7)**2*(x**4+3*x**2+4)**(1/2),x)

[Out]

Integral(sqrt((x**2 - x + 2)*(x**2 + x + 2))*(5*x**2 + 7)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{x^{4} + 3 \, x^{2} + 4}{\left (5 \, x^{2} + 7\right )}^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^2*(x^4+3*x^2+4)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + 3*x^2 + 4)*(5*x^2 + 7)^2, x)